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Summary

Alpha-melanocyte stimulating hormone (α-MSH) is a neuropeptide exhibit-
ing anti-inflammatory activity in experimental models of autoimmune dis-
eases. However, no studies thus far have examined the effects of α-MSH on
systemic lupus erythematosus (SLE). This study aimed to determine the
effects of an α-MSH agonist in induced murine lupus. Here we employed
female Balb/cAn mice in which lupus was induced by pristane. Groups of
lupus animals were treated daily with the α-MSH analogue [Nle4, DPhe7]-α-
MSH (NDP–MSH) (1·25 mg/kg) injected intraperitoneally or saline for 180
days. Normal animals comprised the control group. Arthritis incidence,
plasma immunoglobulin (Ig)G isotypes, anti-nuclear antibodies (ANA) and
plasma cytokines were evaluated. Renal function was assessed by proteinuria
and histopathological lesion. Glomerular levels of IgG, α-smooth muscle
actin (α-SMA), inducible nitric oxide synthase (iNOS), C3, CD3,
melanocortin receptors (MCR)1, corticotrophin-releasing factor (CRF) and
α-MSH was estimated by immunohistochemistry. When compared with
normal controls, lupus animals exhibited increased arthritis, IgG levels,
ANA, interleukin (IL)-6, IL-10, proteinuria and mesangial cell proliferation
together with glomerular expression of α-SMA and iNOS. Glomerular
expression of MCR1 was reduced in lupus animals. NDP-MSH treatment
reduced arthritis scores by 70% and also diminished IgG1 and IgG2a levels
and ANA incidence. In the glomerulus, NDP–MSH treatment reduced
cellularity by 50% together with reducing IgG deposits, and expression levels
of α-SMA, iNOS and CRF were also all decreased. Taken together, our results
suggest for the first time that α-MSH treatment improves several parameters
of SLE disease activity in mice, and indicate that this hormone is an interest-
ing potential future treatment option.
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Introduction

Systemic lupus erythematosus (SLE) is an autoimmune syn-
drome exhibiting heterogeneous outcomes that can affect
multiple organs. The disease is characterized by tissue
damage induced by chronic inflammation, the presence of
autoantibodies and autoreactive lymphocytes and cytokine
imbalances [1]. The kidneys are particularly susceptible to
injury, as almost 60% of SLE patients will present renal
involvement at some point. Immune complex deposition
and inflammatory milieu are the key factors that amplify
kidney lesions [2,3].

The neuro-immuno-endocrine system is known to par-
ticipate in autoimmune diseases regulation. A disturbed
hypothalamic–pituitary–adrenal (HPA) axis response has
been associated with SLE in humans and in animal models
[4,5]. Accordingly, pituitary polypeptide adrenocorti-
cotrophic hormone (ACTH), a melanocortin family com-
ponent, was widely used during the 1950s to treat both
lupus and nephrotic syndrome. However, ACTH was
quickly replaced by oral synthetic corticoid treatment due
to administration advantages [6].

Today, interest in melanocortin neuropeptides has
re-emerged through α-melanocyte-stimulating hormone
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(α-MSH). This peptide, derived from ACTH, has arisen as a
new tool to control the inflammatory process [7]. Multiple
experimental studies have described the anti-inflammatory
properties of α-MSH during ischaemia–reperfusion injury
[8] and in autoimmune diseases including uveitis [9],
encephalomyelitis [10], contact hypersensitivity [11] and
arthritis [12]. Although anti-inflammatory effects have also
been reported in models of kidney disease, improving
haemodynamic failure and reducing the severity of renal
lesions [13–15], limited effects in restoring impaired renal
function and proteinuria have been described [14,16,17].

Melanocortin receptors (MCR) are present in multiple
tissues and cell types, including the glomerulus, renal
tubules, neutrophils, monocytes, dendritic cells and lym-
phocytes [18]. MCR1 activation prevents nuclear factor
kappa B (NF-κB) translocation and reduces the production
of several inflammatory mediators [19]. In experimental
models of nephritis, α-MSH increases animal survival and
improves glomerular filtration. Simultaneously, it decreases
apoptosis, fibrosis, neutrophil infiltration, cytokine expres-
sion and reactive oxygen species production [13–15].

Induced lupus models that resemble the SLE human
disease are of pivotal relevance because they allow the
study of mechanisms involved in the disease onset
[20]. Among these models, intraperitoneal injection
of mice with the hydrocarbon oil pristane (2,6,10,14-
tetramethylpentadecane) is remarkable in that it faithfully
exhibits the clinical manifestation and laboratorial abnor-
malities that are characteristic of SLE [21]. In addition, the
pristane lupus-like model can be induced in the Balb/c
strain, which is a more reliable colony of animals compared
with spontaneous lupus mice [20].

Considering that SLE patients present antigen presenta-
tion defects, cytokine release, arthritis and nephritis, and
suffer alterations in the HPA axis, a plausible connection
exists between melanocortins and lupus pathophysiology.
However, no study discusses the effect of α-MSH on lupus.
Therefore, the present study evaluated the effects of an
α-MSH analogue treatment on pristane-induced murine
lupus.

Materials and methods

Animals

This protocol was approved by the local Research Ethic
Committee of Hospital Clinics/School of Medicine, Univer-
sity of São Paulo, under process number 0612/09·09. All
animal care and experimental procedures were developed in
strict conformity with Universities Federation for Animals
Welfare and the Committee of Brazilian College of Experi-
mental Animals (COBEA).

Because the pristane-induced model presents female pre-
ponderance as human disease [22], only adult female mice
were employed. Twenty adult BALB/cAnUnib mice, 8·5

weeks old and weighing 20–25 g, were employed. The
animals were kept in conventional colony rooms at the
Rheumatology Division facility with controlled temperature
(23 ± 1°C) and a 12-h light/dark cycle with food in pellets
and water ad libitum. To avoid stress interference, no
experiments were initiated until 15 days after animal arrival.

Experimental design and α-MSH treatment

Lupus was induced in 15 mice with a single intraperitoneal
(i.p.) injection of 0·5 ml pristane (2,6,10,14 tetramethyl-
pentadecane; Sigma Chemical Co., St Louis, MO, USA) that
had been previously filtered through a 0·22 μm membrane
(Millipore, Billerica, MA, USA) [23]. Five control mice
received the same volume of 0·9% saline. Peripheral blood
(250 μl) was collected from the submandibular vein at base-
line and 180 days after treatment.

Alpha-melanocyte-stimulating hormone analogue [Nle4,
DPhe7]-α-MSH (NDP-MSH; Melanotan-I) was purchased
from Peptides International (Louisville, KY, USA). The
α-MSH analogue [Nle4, DPhe7]-α-MSH was chosen due to
its higher stability, biodisponibility and resistance to
proteolytic degradation compared with the native peptide.
In addition, it does not interfere with endogenous
glucocorticoid production [24,25].

The NDP-MSH treatment was prepared according to the
manufacturer’s instructions. NDP-MSH was first dissolved
in acetic acid solution and then added to 0·9% saline (final
acid concentration 0·06%). Daily treatment with the
hormone analogue started just after pristane injection and
was always performed between 8:00 and 10:00 h [26,27].
Mice with pristane-induced lupus (LM) were allocated ran-
domly in two groups of five or 10 animals: LM treated with
saline (0·9%, pH = 5, LM) or LM treated with the NDP-
MSH 1·25 mg/kg day i.p. (LM-MSH). The control group
(control) consisted of normal animals treated with saline
i.p. Before killing, the animals were anaesthetized with
xylazine (5 mg/kg) and ketamine (50 mg/kg) administered
i.p.

Total leucocyte counts

Total peripheral blood leucocytes were counted in a
Neubauer chamber diluted 1:20 with Turk.

Autoantibody detection

Immunoglobulin (Ig)G1, IgG2a, IgG2b and IgG3 levels in
diluted plasma (1:15 000) were measured by enzyme-linked
immunosorbent assay (ELISA). IgG isotype standards from
Southern Biotechnology (Birmingham, AL, USA) were used
for standard curve fitting at concentrations of 15·62–
1000 ng/ml.

Anti-nuclear and cytoplasmic autoantibodies (ANA)
were detected by indirect immunofluorescence using a
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home-made HEp-2 cells assay. Slides were incubated for
40 min with 1:200 murine plasma in phosphate-buffered
saline (PBS), washed and then incubated for 30 min with
1:50 fluorescein isothiocyanate-conjugated goat anti-mouse
IgG H + L (Southern Biotechnology). After another wash,
slides containing cells were analysed with a fluorescence
microscope.

Quantification of plasma cytokines

Cytokine levels [interleukin (IL)-6, IL-10, tumour necrosis
factor (TNF)-α and interferon (IFN)-γ] were analysed
using a fluorokine mouse multi-analyte profile kit (R&D
Systems, Minneapolis, MN, USA). According to the manu-
facture’s protocol, plasma samples were diluted 1:2 and
incubated with anti-cytokine beads overnight at 4°C. Events
were counted on a luminex 200 system (Luminex, Austin,
TX, USA). Data analyses were performed using the
Milliplex Analyst version 3·5.5·0 (Vigenetech, Carlisle, MA,
USA). A five-parameter regression formula was used to cal-
culate the sample concentration. Data were expressed in
pg/ml.

Arthritis evaluation

The arthritis severity was assessed 180 days after pristane
inoculation, using a scoring system that considers oedema,
erythema and number of affected joints as: 1 = small,
2 = moderate, 3 = marked and 4 = severe. Thus, the
maximum total score per animal was 16 [28].

Renal function evaluation

Before killing, the animals were individually contained to
collect spot urine. All samples were analysed using pro-
teinuria measurements kits (Labtest Diagnosis, Minas
Gerais, Brazil). To estimate urinary albumin concentration,
10 μl of urine was run on 10% sodium dodecyl sulphate-
polyacrylamide gel electrophoresis (SDS-PAGE) and was
Coomassie-stained. A pattern of bovine serum albumin
(BSA) (Sigma Chemical Co.) was used to adjust the stand-
ard curve with concentrations from 0·0625 to 0·5 mg/ml.
The bands were measured by densitometric analyses with
ImageJ software.

Histopathological evaluation

After killing, the kidneys were perfused in situ with saline,
the right kidney was removed and fixed in 10% buffered
formalin, embedded in paraffin and sectioned at 3 μm
thickness in the transversal plane containing the renal long
axis. Slides were stained using haematoxylin and eosin
(H&E) and periodic acid-Schiff (PAS) stains to highlight
the glomerulus and pricrosirius red to stain collagen fibres.

Cellularity was quantified on H&E-stained slides by count-
ing the total glomerular cell nuclei. At least 30 glomeruli/
slides were assessed, and the results were expressed as
number of nuclei per glomerulus. Sections stained with PAS
were graded as: 1+ = mild focal mesangial hypercellularity;
2+ = moderate mesangial hypercellularity; 3+ = complex
endocapillary hypercellularity sometimes with mild sclero-
sis or necrosis; 4+ = severe endocapillary proliferative glo-
merulonephritis with necrosis or crescent formation. Scores
≥ 2+ were considered to be positive [29]. Pricrosirius red-
stained slides were analysed under polarized light using an
Olympus camera attached to an Olympus BX-51 micro-
scope (Center Valley, PA, USA), and the collagen area was
determined based on positive staining in the image analyses
system.

Immunohistochemistry

Glomerular expression of α-smooth muscle actin
(α-SMA), T cell marker CD3, complement component 3
(C3), corticotrophin-releasing factor (CRF), inducible
nitric oxide synthase (iNOS), α-MSH, MCR1 and IgG
were determined by immunohistochemical analyses in
deparaffinized kidney sections. After rehydration, the
endogenous peroxidase activity was ablated by incubation
in 3% hydrogen peroxide for 10 min. Next, the sections
were incubated with Tris/ethylenediamine tetraacetic acid
(EDTA) (10 mM/1 mM buffer, pH 9·0) for 25 min and
incubated with a biotin/avidin blocking solution (Dako,
Glostrup, Denmark). Primary antibodies anti-α-SMA
(ab5694; 1:100; Abcam, Cambridge, UK), anti-CD3
(ab5690; 1:100; Abcam), anti-C3 (sc-28294; 1:50; Santa
Cruz Biotech, Santa Cruz, CA, USA), anti-CRF (h-019-06;
1:100; Phoenix Pharmaceuticals, Burlingame, CA, USA),
anti-α-MSH (h-043-01; 1:100; Phoenix Pharmaceuticals),
anti-MCR1 (ABIN686287, 1:100; Antibodies-online,
Aachen, Germany), anti-iNOS (PA5-16855; 1:200; Thermo
Scientific, Rockford, IL, USA) and anti-IgG (LS-C59195;
1:400; LifeSpan, Bellevue, WA, USA) were added to each
section and incubated overnight at 4°C. After PBS washing,
the slides were incubated for 30 min with EnVision-
horseradish peroxidase (HRP), labelled streptavidin–biotin
(LSAB)-HRP or Advance-HRP (Dako). Enzyme sandwich
reactions were developed using 3,3′-diaminobenzidine
(Sigma Chemical Co.), and then the slides were washed,
counter-coloured with haematoxylin and mounted with
Permount.

Image analyses

The slides were digitally archived using a Pannoramic Scan
instrument (software version 1·11·25·0; 3DHistech, Buda-
pest, Hungary) with a ×20 objective and expanded focus.
Total levels of collagen fibres, α-SMA, CD3, C3, CRF,
α-MSH, MCR1, iNOS and IgG in the glomerulus were
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quantified using Image-ProPlus version 4·1 software for
Windows (Media Cybernetics, Silver Spring, MD, USA).

The positively stained areas were determined by colour
threshold. These procedures generated a file containing a
colour selection data, which was applied afterwards to the
kidney sections. The results of each marker were expressed
as the ratio of positively stained area per total glomerular
area (μm2).

Statistical analyses

Significance tests were performed with spss version 17·0.1
software (spss, Inc., Chicago, IL, USA) or GraphPad prism
version 6·0 Software (GraphPad software, San Diego, CA,

USA). Data were initially compared with the Gaussian curve
through the K–S test. Parametric data were analysed using
one-way analysis of variance (anova) with pairwise post-
test comparisons by the Neuman–Keuls method. Non-
parametric data were compared using anova followed by
modified Tukey’s test and results are expressed as median
and interquartile ranges. The incidence of ANA, arthritis
and renal lesion were compared using Pearson’s χ2 test.
P < 0·05 was considered statistically significant.

Results

Inhibitory effect of NDP–MSH on arthritis
development

Arthritis incidence and severity is shown in Fig. 1. LM mice
exhibited a high incidence of arthritis (80%) and a mean
score of 5·2. Treatment with NDP-MSH reduced both inci-
dence (40%) and arthritis score (1·6, P < 0·05 versus LM).

When compared with control animals, both the LM and
LM-MSH groups exhibited greater weight gain by day 180
of the experiment (P < 0·01). LM animals presented with
leucocytosis 180 days after pristane administration. NDP-
MSH treatment had no impact on the white blood cell
count. The relationships between right kidney, spleen and
liver weights and body weights were not different between
the groups.

NDP–MSH treatment reduces IgG1, IgG2a levels and
ANA frequency

As shown in Fig. 2, plasma levels of IgG1 and IgG2a
increased 180 days after pristane inoculation compared
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with control animals. NDP-MSH treatment reduced IgG1
and IgG2a levels (P < 0·05 and P < 0·001 versus LM, respec-
tively). IgG2b and IgG3 levels did not differ between the
groups.

The plasma ANA assessment is presented in Fig. 3a. One
hundred per cent (five of five) of LM exhibited ANA posi-
tivity at titres ≥1:200. None of the control animals (none of
five) showed ANA positivity (P < 0·01) compared to 30% of
LM-MSH animals (P < 0·01 versus LM). Figure 3b illus-
trates the absence of anti-nuclear antibodies registered in

control animals and Fig. 3c shows a positive pattern verified
in HEp-2 cells incubated with LM plasma.

NDP–MSH effect on cytokine production

As shown in Table 1, both plasma IL-6 and IL-10 levels
increased 180 days after pristane inoculation (P < 0·05
versus control). When compared with the LM group, treat-
ment with NDP-MSH slightly reduced IL-6 and IL-10
levels. The LM-MSH group showed increased TNF-α levels
when compared with the LM group (P < 0·01). IFN-γ levels
were below the detection range in all groups.

NDP–MSH treatment prevented glomerular lesions

Figure 4 shows the results of the renal function evaluation
in spot urine samples. At the end of the experimental
period LM had significant proteinuria (P < 0·001), which
was not affected by the NDP-MSH treatment (Fig. 4a). The
same pattern was observed in albuminuria (Fig. 4b).

Histopathological analysis data are presented in Fig. 5.
LM showed increased glomerular cellularity (Fig. 5a) com-
pared with the control group (P < 0·01). The treatment of
LM with NDP-MSH reduced this cellularity (P < 0·05 versus
LM). Figure 5b shows the renal damage assessed 180 days
after lupus induction. Lupus animals exhibited a profile
characterized by moderate histopathological mesangial
hypercellularity (score = 2) that was higher than the degree
of injury observed in the control animals (P < 0·05). NDP-
MSH treatment reduced this score (P < 0·05 versus LM).
Notably, 80% of the animals treated with NDP-MSH
showed a degree of damage less than 2. The fibrosis evalua-
tion in pricrosirius red-stained slides revealed no difference
between the control and LM groups (data not shown).

Effect of NDP–MSH treatment on glomerular IgG
deposits and the expression of α-SMA, iNOS, CRF,
α-MSH and MCR1

Glomerular deposition of IgG and the expression of α-SMA
and iNOS are shown in Fig. 6. When compared with the
control group, LM showed increased expression of all
markers, which were decreased by NDP-MSH treatment.
The figures depict the glomerular appearance of control
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Table 1. Effect of [Nle4, DPhe7]-α-MSH (NDP-MSH treatment on

cytokine production of lupus mice (LM) and control mice.

Cytokine

Control LM LM-MSH

(n = 5) (n = 5) (n = 10)

IL-6 (pg/ml) 5·94 ± 2·36 84·31 ± 54·11* 42·95 ± 13·85*

IL-10 (pg/ml) 2·35 ± 0·45 5·34 ± 0·81* 4·49 ± 0·68

TNF-α (pg/ml) 0·047 ± 0·016 2·12 ± 0·63* 3·82 ± 0·52*#

IFN-γ (pg/ml) – – –

Results are expressed as mean ± standard error. *P < 0·05 versus

control and #P < 0·05 versus LM. IL = interleukin; IFN = interferon;

TNF = tumour necrosis factor.
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animals (Fig. 6b), LM (Fig. 6c) and LM-MSH animals (Fig.
6d). The expression of CD3 and C3 did not differ between
the groups (data not shown).

Glomerular expression of MCR1 was reduced in LM
(P < 0·01 versus control) and in LM-MSH animals

(P < 0·001 versus control). The expression of neuropeptides,
CRF and α-MSH were similar in control and LM. Treat-
ment with NDP-MSH reduced the expression of glomerular
CRF (P < 0·01) but did not affect α-MSH expression
(P = 0·12) (Fig. 7).

(a) (b)
50

40

30

20

10

0N
uc

le
ii 

pe
r 

gl
om

er
ul

us

C LM LM-MSH

3

2

1

0

R
en

al
 d

am
ag

e 
sc

or
e

C LM LM-MSH

* # * #

Fig. 5. [Nle4, DPhe7]-α-MSH (NDP-MSH treatment limited renal lesion in pristane-induced lupus-like model. The analysis of glomerular

cellularity and renal damage scores, assessed in periodic acid-Schiff (PAS)-stained sections, graded as: 1+ = mild focal mesangial hypercellularity;

2+ = moderate mesangial hypercellularity; 3+ = complex endocapillary hypercellularity sometimes with mild sclerosis or necrosis; 4+ = severe

endocapillary proliferative glomerulonephritis, revealed an amelioration of these parameters in LM treated with NDP-MSH. The results are

expressed as median with interquartile range, *P < 0·05 versus control and #P < 0·05 compared to the LM.

250

200

150

100

50

0
Control LM LM-MSH

Control LM LM-MSH

G
lo

m
er

ul
ar

 Ig
G

in
te

ns
ity

 r
at

io
 (

×
10

 0
00

)

* #

80

60

40

20

0
Control LM LM-MSH

α-
S

M
A

in
te

ns
ity

 r
at

io
 (

×
10

 0
00

)

80

60

40

20

0
Control LM LM-MSH

iN
O

S
in

te
ns

ity
 r

at
io

 (
×

10
 0

00
)

* #

* #

(a)
(b) (c) (d)

(e)
(f) (g) (h)

(i)
(j) (k) (l)

Fig. 6. Effect of [Nle4, DPhe7]-α-MSH (NDP-MSH on glomerular immunoglobulin (Ig)G deposit, α-smooth muscle actin (α-SMA) and inducible

nitric oxide synthase (iNOS) expression in pristane-induced lupus-like model. IgG deposits detected by immunohistochemistry in the glomeruli of

lupus mice (LM) were abrogated by the treatment with NDP-MSH (a–d). Similarly, α-SMA expression (e–h) and iNOS expression (i–l) were also

decreased significantly in LM submitted to NDP-MSH therapy. The results of each marker were expressed as the ratio of positively stained area per

total glomerular area (μm2). Data are expressed as median with interquartile range. *P < 0·05 versus control, #P < 0·05 versus LM.

D. A. C. Botte et al.

386 © 2014 British Society for Immunology, Clinical and Experimental Immunology, 177: 381–390



Discussion

This study shows, for the first time to our knowledge, that
the α-MSH super-analogue NDP-MSH improves several
parameters of lupus disease progression in mice.

The chosen experimental model was an important com-
ponent of our protocol, as pristane presence in human
blood suggests a positive correlation with autoimmune
disease incidence [30]. In this context, after pristane injec-
tion, mice developed a lupus-like syndrome characterized
by the presence of hypergammaglobulinaemia, ANA, spe-
cific antibodies, arthritis, glomerulonephritis and abnormal
cytokine production [21,22,29]. The incidence and severity
of joint inflammation, one of the most common SLE mani-
festations, were suppressed by the treatment employed in
this study. In accordance with our findings, neuropeptide
therapy in other arthritis models was effective in controlling
joint inflammation [12,31]. In human disease, α-MSH has
been related to rheumatoid arthritis pathogenesis as a possi-
ble compensatory mechanism [32]. In the present study, the
ability of NDP-MSH treatment reducing lupus activity was
confirmed by the observed reductions in hypergamma-
globulinaemia and ANA incidence. Accordingly, α-MSH

treatment also reduced IgG1 and IgG2a levels in an airway
inflammation model [33]. The importance of this impair-
ment is corroborated by findings that treating pristane-
induced lupus with other immunomodulatory compounds
also changes these parameters [34,35].

Lupus immune dysfunction is characterized by uncon-
trolled cytokine production. Levels of IL-6 and IL-10 are
tightly correlated with the activity and severity of the
disease in humans [36] and in experimental models [37–
39]. The importance of IL-6 in lupus is evidenced by the
reductions in autoantibody production and renal injury
observed in IL-6 knock-out mice injected with pristane
[40]. Furthermore, clinical studies show that patients
exhibit reduced SLE activity after treatment with anti-IL-6R
[41]. Interestingly, patients with chronic renal disease
present an inverse correlation between IL-6 and α-MSH
levels [42]. Accordingly, our lupus animals exhibited
increased IL-6 production, and NDP-MSH treatment
reduced this production by 37·9%, although not statistically
significantly. IL-10 levels are also elevated in mice with
pristane-induced lupus, and attenuation of the disease is
accompanied by IL-10 reduction [43]. Lupus patients
treated with anti-IL10 therapy show impaired disease
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(a–d). The expression of melanocortin receptor (MCR)1 diminished in LM, but was not influenced by NDP-MSH treatment (e–h). NDP–-MSH

treatment reduced the α-MSH expression in the glomeruli of LM (i–l). The results of each marker were expressed as the ratio of positively stained

area per total glomerular area (μm2). Data are expressed as median with interquartile range. *P < 0·05 versus control, #P < 0·05 versus LM.
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activity [44]. In our study, we did not observe a significant
effect of α-MSH on IL-10 production. In this context, the
effect of this neuropeptide on IL-10 remains controversial,
as previous studies have reported both reduced IL-10 levels
[13] or no effect [45,46]. As part of the mechanism of
action of α-MSH is on NF-B preventing nucleus transloca-
tion, the anti-inflammatory activity certainly involves the
reduction of proinflammatory markers [47,48]. Surpris-
ingly, our treatment with NDP-MSH increases TNF-α
levels. Although TNF-α is a proinflammatory cytokine, the
role of TNF-α in lupus has not been definitively established.
In this context, clinical studies have shown that anti-TNF
therapy worsens disease activity and triggers a lupus-like
disease [49]. In experimental models, the administration of
high doses of TNF-α does not alter and sometimes delays
nephritis development [50,51].

The most severe complication of SLE is renal involve-
ment. In the present study, as well as in humans, not all
mice developed nephritis. Previous studies of pristane-
induced lupus showed similar incidence rates and the same
patterns of glomerular lesion [29,38]. Regarding markers of
renal injury, our schedule of treatment with NDP-MSH did
not alter proteinuria/albuminuria, but it did improve other
parameters of glomerular injury. Accordantly, similar find-
ings were observed in other nephritis studies, where α-MSH
did not affect plasma urea or creatinine but did improve
histological markers [14,15]. The inefficacy of α-MSH on
proteinuria was also reported on New Zealand black/white
F1 mice [16]. Our data show that lupus is characterized by
high glomerular α-SMA expression. In accordance with
these results, mesangial cells of patients with LN class II also
present increased α-SMA expression [52,53]. The adminis-
tration of α-MSH also reduced glomerular expression
α-SMA glomerular in models of liver damage [54] and pul-
monary fibrosis [55]. In our view, the glomerular injury
induced by pristane is not particularly severe. In our study,
we detected no changes in CD3 and C3 expression or in
glomerular fibrosis. In this context, only patients with pro-
liferative NL (classes III and IV) present high infiltration of
T lymphocytes in the kidney and necrosis [56].

One interesting point regarding the relationships
between melanocortins is the negative feedback effect of
α-MSH on CRF [57]. Our study corroborates this finding,
as we observed minor expression of CRF in the NDP-MSH-
treated group.

The increased expression of iNOS and increases in nitric
oxide are associated with renal damage in SLE patients [58]
and mice [59]. Pristane injection also increases iNOS
expression in kidney [39]. To our knowledge, this is the first
study showing the ability of α-MSH to reduce glomerular
iNOS expression in a lupus-like disease model. Studies in
vivo and in vitro supplied experimental data to support our
results [60,61]. Indeed, iNOS expression is associated with
inflammation and iNOS blockade ameliorates arthritis in
animals [62].

Although the melanocortin receptor MCR1 is widely
expressed in the kidney [18], no study has addressed its
expression in human or experimental lupus. Our data show
that NDP-MSH treatment reduces glomerular MCR1. In
accordance with these results, down-regulation of the
receptor has been documented previously following NDP-
MSH treatment [63]. Nevertheless, animals with lupus but
not receiving treatment also presented minor MCR1
expression. Attenuated MCR1 expression has been
described previously during ischaemic kidney disease in rats
and in human liver [64,65]. The reason for this effect
remains unknown; however, the explanation could be
receptor desensitization by high α-MSH levels during the
development of the disease. The current study was unable
to test this hypothesis, as we did not measure native α-MSH
levels in our animals. In this regard, the effects of native
α-MSH were completely overwhelmed by the high doses of
its hormone analogue [66].

Altogether, our results show that α-MSH opposes several
factors involved in lupus pathogenesis. The current treat-
ment of lupus patients involves a large therapeutic arsenal
that is often incapable of controlling multiple disease symp-
toms. We believe that the neuropeptide NDP-MSH shows
potential to serve as an important new tool in treating this
inflammatory condition.
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